We are working to train a new model to segment the heart. We have 6 pre-labelled scans which I am using for the initial training. I kept all the parameters on default except increasing the max_epoch to 1000. I am using a cloud GPU for the server (A100 (40 GB), 30 VCPUs, 200 GiB RAM, 512 GiB SSD) and SSH with port forwarding to my local 3Dslicer 5.0.3 r30893. I added the correct labels to the segmentation.py and turned the pre.trained model to “false”. My first model didn’t include a background label but however in my second run I included it but with no better results.
Here is what autosegmentation of a validation set looks like:
So I ran the auto segmentation on a few volumes including the trained volumes and I seem to be getting the exact same result for all of them, The exact same segmentation like the one above.
Both the training and validation datasets are in NIFTI format
Many thanks for pinging me here, @rbumm - I haven’t seen this post.
@mahranahm welcome to the Slicer forum and thanks for posting this issue.
Could you please let us know which monai label version are you using?
If it is easy for you, I’d suggest you work directly with the GitHub repo. The reason for this is because it includes a more robust segmentation model called localization_spine - probably not the best name but I’m still working on this to make it generic
Another question/comment is about the label numbering - have you checked that each segment in the database has the same number? i.e. the right lung should be represented by the same number in all volumes.